Cemento d'autore

Una serie di manifestazioni culturali ha rievocato la figura e le opere del celebre progettista romano, uno dei più brillanti ingegneri del secolo, nume tutelare di un'unione fortunata: quella di ferro e calcestruzzo di Antonino Saggio

Un grande convegno, una mostra, un filmato e un monumentale catalogo: così l'Università di Roma, l'Accademia di San Luca, l'Iri-Italsider e un gruppo di imprese di costruzione hanno onorato il lavoro e la figura di Riccardo Morandi. Le manifestazioni culturali in memoria dell'ingegnere romano, svoltesi nella capitale, rappresentano un merito riconoscimento a più di sessant'anni di prestigiosa attività progettuale, in particolare da parte della cultura universitaria, che non gli ha mai concesso di diventare professore ordinario, nonostante abbia insegnato con passione nella facoltà di Architettura di Firenze e, dal 1969, a Roma, nella facoltà di Ingegneria della Sapienza.

Morandi è stato, assieme a Pierluigi Nervi, la figura di punta degli ingegneri italiani. Ha contribuito allo sviluppo tecnico delle costruzioni in cemento armato, ma ha soprattutto creato strutture che risolvono il calcolo statico in potenti composizioni spaziali. A partire dal dopoguerra, mentre la tendenza progettuale di Nervi si concentra sulla ricerca di un equilibrio rassicurante, spesso simmetrico e statico, Morandi raggiunge i più rilevanti risultati tecnici ed estetici puntando sul tema opposto. Come ha notato Bruno Zevi in un intervento al convegno, le strutture di Morandi sembrano raggiungere un momento prima del crollo.

Mensole eibalzi, travi appoggiate, archi a tre cerniere, stralli e telai (tutto quel complesso di figure statiche che formano i famosi "ragni", croce e delizia degli studenti di ingegneria e architettura), si giustappongono in maniera niente affatto classica e rassicurante. Anzi, alla luce dei metodi costruttivi tradizionali le strutture sono irrealizzabili e proprio per questo risultano efficienti, logiche ed economiche per le ragioni del cemento armato. Morandi è stato per tutta la vita il nume dell'unione fortunata tra il calcestruzzo e il ferro. L'uno risponde agli sforzi di compressione con la geometria e la massa delle sezioni, l'altro agli sforzi di trazione con l'elasticità. Il risultato è un materiale solido, forte, indistruttibile, plasmabile in forme e schemi statici che permette, attraverso la tecnica della precompressione, di raggiungere luci molto elevate e realizzare le grandi opere della tecnica moderna.

Il progettista sperimenta le potenzialità del cemento armato e della precompressione in strutture a destinazione diversa, dalle abitazioni alle sale di spettacolo, dalle autorimesse agli hangar, dai ponti ai viadotti. Prima della guerra lavora per la nuova città industriale di Colleferro, operando a tutto campo, dalla pianificazione alla realizzazione di stabilimenti e servizi. Negli anni Trenta si cimenta anche nella progettazione di sale di spettacolo: l'Augustus di Roma, ricavato all'interno di un edificio esistente, consiste in una nuova struttura larga 18 metri che supporta i tre piani superiori, mentre il Giulio Cesare, di ben duemila posti, ha come dato caratterizzante la balconata curvilinea che ospita la galleria. Il lavoro sulle sale (segue)
di spettacolo ha il più importante episodio nella realizzazione del cinema Maestoso, sempre nella capitale, che risale alla metà degli anni Cinquanta. Si tratta di un edificio plurioso di 50 mila metri cubi, che rappresenta lo stato dell'arte tecnologica del momento: ospita una sala da proiezione da 2600 posti, sei abitazioni superiori, sale sottotane per intrattenimenti e due braccia a un piano per bar e tavola calda. L'insieme funziona da richiamo pubblicitario e commerciale in una periferia cresciuta sull'onda di una feore speculazione.

Morandi opera con schiettezza sulla diversità delle funzioni, crea un pacchetto di abitazioni superiori rigorosamente seriali e riavela la funzione pubblica portando sulla facciata la scala del cinematografo, visibile attraverso il vetro dei pannelli. L'interno della sala è una struttura di piedritti a sezione variabile, che fanno viaggiare i pesi orizzontali delle balconate a sbalzo sino al punto di scontro. Ma l'intera costruzione è caratterizzata principalmente da sei portali zoppi che paragonano dall'atrio e, attraverso i 40 metri del cinema, vanno a poggiare su un traverso che contiene lo spazio scenico. L'intera costruzione, compresi i tre piani di appartamenti, risulta sostenuta da questo enorme telaio. Tecnicamente l'opera sfrutta il principio della precompressione, alla quale Morandi ha attivamente lavorato sin dagli anni della guerra, realizzando anche sette sistemi brevettati per la tensione dei cavi di acciaio.

Oltre agli aspetti matematico, scientifico e progettuale, molti degli scritti raccolti nel monumentale catalogo dell'esposizione romana, curato da Giuseppe Imbesi, Maurizio Morandi e Francesco Moschini, si soffermano sulla passione artigianale per il lavoro, che non si esaurisce nella dedizione e nella perizia nel seguire il cantiere. Come ogni artigiano creativo, infatti, Morandi affina i propri strumenti e ne crea continuamente, dei quali i brevetti di precompressione sono solo l'esempio più noto. Il filmato "Ricordo Morandi, l'arte del costruire" di Leandro Castellani contribuisce in maniera determinante a mettere a fuoco questo aspetto, insieme con la serietà e la modestia del personaggio: raccolgono le testimonianze di persone che in varie circostanze gli sono state vicine – il fratello Guglielmo, i professori Winkler, Ceradini e Pettangeli, gli ingegneri collaboratori Fresnot e Pagnoni, gli impresari Serra di Cassano.


Nelle grandi costruzioni per gli avioggetti, Morandi realizza coperture appese sui supporti periferici per non avere ostacoli negli spazi di lavoro. Nel primo hangar una mensole in aggetto di 60 metri sostenuta da stralli viene ripetuta identica in serie parallele, mentre in quello realizzato circa dieci anni dopo la copertura è concepita come una tenda sostenuta da tiranti, con sviluppo radiale a partire dai tre supporti vericeli. In entrambi i casi, il cimento armato viene adoperato per sapere l'idea e l'immagine di leggerenza dei reticoli di stralli contro il cielo.

Nella struttura ipoge torinese di 69 metri di ampiezza, 151 di lunghezza e otto di altezza, lo sforzo è al contrario nella ricerca plastica e nel ritmo delle potenti travature a sezione variabile, che si raccogliono nei supporti inclinati e incernierati al suolo, già sperimentati in tanti ponti. La costruzione
viene allo stesso tempo irrigidita e dinamicamente scandita attraverso l’abbinamento dei ritti, che ne spezza una monotona ripetizione seriale, e con l’incrocio delle travature che, congiungendo in obliquo ritti sfalata, creano la mezzeria i ronbi di vetrocemento da cui penetra la luce. Se negli involucri degli edifici l’ingegneria rivela qualche rigidezza ed elementarità, in questo salone sotterraneo e nei suoi numerosi ponti è completamente libero di integrare in un unico gesto calcolo, schema statico e spazio architettonico. Ciò rende vana ogni distinzione tra tecnica e arte (o tra ingegneria e architettura) e da forma a quell’attimo fuggevole che per Morandi è equilibrio.

Un capitolo internazionalmente noto della sua attività viene segnato da ponti e viadotti, realizzazioni in cui si coagula lo sforzo tecnico verso l’attraversamento di grandi distanze alla tensione tridimensionale delle membrature. Anche qui l’ingegneria sperimenta, le strutture a trave a quelle ad arco, ai sistemi con stralli e telai. Del primo caso basta ricordare il cavalcavia di corso Francia a Roma e il ponte Vespucci di Firenze, in cui l’aspetto tecnico della precompresione viene risolto nell’elegante esenzialità dei profili e nella tensione estetica verso l’orizzontale; del secondo caso, la sottolineatura il ponte sullo Storms River in Sudafrica, nel quale la realizzazione – basata sulla rotazione di due archi costruiti in verticale e poi abbasati ad appoggiarsi in chiave – è altrettanto importante della progettazione stessa. Ma le opere più interessanti si fondano su uno schema lontano da ogni struttura volta o trilizzata del passato: risulta formato da due compassi strutturali ribaltati, che determinano i supporti verticali. Il primo, più piccolo, è incernierato sulla base di appoggio e sorregge a mensole la prima parte della travatura, mentre l’altro, più grande, si impenna nello spazio ad ancorare gli stralli cui è appeso il secondo tratto della travatura.


Eppure oggi proprio il cemento e le sue diverse aggettivazioni (cementificazione, calata di cemento e altro) hanno una connotazione del tutto negativa nel senso e nel linguaggio comune. Persi i riferimenti figurativi e formali della pianta libera, della facciata indipendente, del tetto giardino della tradizione razionalista, omessi gli sbalzi e le invasioni del contesto dell’esperienza organica, abbandonata la continuità plastica e avvolgente dell’espressionismo, sono rimasti i tratti statici e assi della nostra edilizia, che nulla hanno a che vedere con le vere potenzialità del materiale. E forse il più importante contributo della manifestazione su Riccardo Morandi è proprio questo: ricordare, attraverso il lavoro di un grande progettista, quanto varie, ricche, interessanti, tecnicamente aride e spazialmente intriganti siano le possibilità offerte dal cemento armato.

Antonino Saggio